enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, massenergy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of massenergy equivalence for bodies or systems with non-zero momentum.

  4. Matter creation - Wikipedia

    en.wikipedia.org/wiki/Matter_creation

    To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.

  5. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical massenergy equivalence equation E = mc 2.

  6. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    In this case, conservation of invariant mass of the system also will no longer hold. Such a loss of rest mass in systems when energy is removed, according to E = mc 2 where E is the energy removed, and m is the change in rest mass, reflect changes of mass associated with movement of energy, not "conversion" of mass to energy.

  7. Geometrized unit system - Wikipedia

    en.wikipedia.org/wiki/Geometrized_unit_system

    Energy and momentum are interpreted as components of the four-momentum vector, and mass is the magnitude of this vector, so in geometric units these must all have the dimension of length. We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2.

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    Because of the relativistic equivalence between mass and energy, the eV is also sometimes used as a unit of mass. The Hartree (the atomic unit of energy) is commonly used in the field of computational chemistry since such units arise directly from the calculation algorithms without any need for conversion.