Ads
related to: slope of quadratic equation formula problems with imaginary lines practice
Search results
Results from the WOW.Com Content Network
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic
The solutions of this equation are the x-values of the critical points and are given, using the quadratic formula, by =. The sign of the expression Δ 0 = b 2 – 3ac inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
But if is substituted for in the original equation, the result is the invalid equation =. This counterintuitive result occurs because in the case where x = 0 {\displaystyle x=0} , multiplying both sides by x {\displaystyle x} multiplies both sides by zero, and so necessarily produces a true equation just as in the first example.
If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
Rubin (1991) showed that for elliptic curves defined over an imaginary quadratic field K with complex multiplication by K, if the L-series of the elliptic curve was not zero at s = 1, then the p-part of the Tate–Shafarevich group had the order predicted by the Birch and Swinnerton-Dyer conjecture, for all primes p > 7.
The problem of constructing a regular pentagon is equivalent to the problem of constructing the roots of the equation z 5 − 1 = 0. One root of this equation is z 0 = 1 which corresponds to the point P 0 (1, 0). Removing the factor corresponding to this root, the other roots turn out to be roots of the equation z 4 + z 3 + z 2 + z + 1 = 0.
Ads
related to: slope of quadratic equation formula problems with imaginary lines practice