enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negation - Wikipedia

    en.wikipedia.org/wiki/Negation

    In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", written , , ′ [1] or ¯. [citation needed] It is interpreted intuitively as being true when is false, and false when is true.

  3. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.

  4. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    Negation: the symbol appeared in Heyting in 1930 [2] [3] (compare to Frege's symbol ⫟ in his Begriffsschrift [4]); the symbol appeared in Russell in 1908; [5] an alternative notation is to add a horizontal line on top of the formula, as in ¯; another alternative notation is to use a prime symbol as in ′.

  5. Triple bar - Wikipedia

    en.wikipedia.org/wiki/Triple_bar

    The closely related code point U+2262 ≢ NOT IDENTICAL TO (≢, ≢) is the same symbol with a slash through it, indicating the negation of its mathematical meaning. [ 1 ] In LaTeX mathematical formulas, the code \equiv produces the triple bar symbol and \not\equiv produces the negated triple bar symbol ≢ {\displaystyle \not ...

  6. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    The symbol is used to denote negation. For example, if P ( x ) is the predicate " x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as:

  7. Exclusive or - Wikipedia

    en.wikipedia.org/wiki/Exclusive_or

    The exclusive or is also equivalent to the negation of a logical biconditional, by the rules of material implication (a material conditional is equivalent to the disjunction of the negation of its antecedent and its consequence) and material equivalence. In summary, we have, in mathematical and in engineering notation:

  8. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    A special case of unary negation occurs when it operates on a positive number, in which case the result is a negative number (as in −5). The ambiguity of the "−" symbol does not generally lead to ambiguity in arithmetical expressions, because the order of operations makes only one interpretation or the other possible for each "−".

  9. Literal (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Literal_(mathematical_logic)

    In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).