enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Our probability model is as follows: Given words {: +}, it takes their vector sum := +, then take the dot-product-softmax with every other vector sum (this step is similar to the attention mechanism in Transformers), to obtain the probability: (|: +):= The quantity to be maximized is then after simplifications:, + (⁡) The quantity on the left ...

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses an unordered collection (a "bag") of words.It is used in natural language processing and information retrieval (IR).

  5. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase." [2] Keras 3 will be the default Keras version for TensorFlow 2.16 onwards, but Keras 2 can still ...

  6. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  7. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Given two strings a and b on an alphabet Σ (e.g. the set of ASCII characters, the set of bytes [0..255], etc.), the edit distance d(a, b) is the minimum-weight series of edit operations that transforms a into b. One of the simplest sets of edit operations is that defined by Levenshtein in 1966: [2] Insertion of a single symbol.

  8. Word n-gram language model - Wikipedia

    en.wikipedia.org/wiki/Word_n-gram_language_model

    If only one previous word is considered, it is called a bigram model; if two words, a trigram model; if n − 1 words, an n-gram model. [2] Special tokens are introduced to denote the start and end of a sentence s {\displaystyle \langle s\rangle } and / s {\displaystyle \langle /s\rangle } .

  9. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning.NAS has been used to design networks that are on par with or outperform hand-designed architectures.