enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods are procedures for statistical inference in which the prior probability distribution is estimated from the data. This approach stands in contrast to standard Bayesian methods , for which the prior distribution is fixed before any data are observed.

  3. James–Stein estimator - Wikipedia

    en.wikipedia.org/wiki/James–Stein_estimator

    Seeing the James–Stein estimator as an empirical Bayes method gives some intuition to this result: One assumes that θ itself is a random variable with prior distribution (,), where A is estimated from the data itself.

  4. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    But the adjustment formula yields an artificial shrinkage. A shrinkage estimator is an estimator that, either explicitly or implicitly, incorporates the effects of shrinkage. In loose terms this means that a naive or raw estimate is improved by combining it with other information.

  5. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations of related parameters, in the development of a Bayes estimator. This is done under the assumption that the estimated parameters are obtained from a common prior.

  6. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    For large samples, the shrinkage intensity will reduce to zero, hence in this case the shrinkage estimator will be identical to the empirical estimator. Apart from increased efficiency the shrinkage estimate has the additional advantage that it is always positive definite and well conditioned. Various shrinkage targets have been proposed:

  7. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent. (This is a bit ...

  8. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Given a vector of parameters to determine, a prior probability () over those parameters and a likelihood (,) for making observation , given parameter values and an experiment design , the posterior probability can be calculated using Bayes' theorem

  9. g-prior - Wikipedia

    en.wikipedia.org/wiki/G-prior

    Consider a data set (,), …, (,), where the are Euclidean vectors and the are scalars.The multiple regression model is formulated as = +. where the are random errors. Zellner's g-prior for is a multivariate normal distribution with covariance matrix proportional to the inverse Fisher information matrix for , similar to a Jeffreys prior.