Search results
Results from the WOW.Com Content Network
The basic example of a topos comes from the Zariski topos of a scheme. For each scheme X {\displaystyle X} there is a site Open ( X ) {\displaystyle {\text{Open}}(X)} (of objects given by open subsets and morphisms given by inclusions) whose category of presheaves forms the Zariski topos ( X ) Z a r {\displaystyle (X)_{Zar}} .
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
The term antonym (and the related antonymy) is commonly taken to be synonymous with opposite, but antonym also has other more restricted meanings. Graded (or gradable) antonyms are word pairs whose meanings are opposite and which lie on a continuous spectrum (hot, cold).
This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
A thesaurus (pl.: thesauri or thesauruses), sometimes called a synonym dictionary or dictionary of synonyms, is a reference work which arranges words by their meanings (or in simpler terms, a book where one can find different words with similar meanings to other words), [1] [2] sometimes as a hierarchy of broader and narrower terms, sometimes simply as lists of synonyms and antonyms.
In group theory, a branch of mathematics, an opposite group is a way to construct a group from another group that allows one to define right action as a special case of left action. Monoids , groups, rings , and algebras can be viewed as categories with a single object.
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and . The area contained by both circles is the joint entropy H ( X , Y ) {\displaystyle \mathrm {H} (X,Y)} .