enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrophobic-polar protein folding model - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic-polar_protein...

    The hydrophobic-polar protein folding model is a highly simplified model for examining protein folds in space. First proposed by Ken Dill in 1985, it is the most known type of lattice protein: it stems from the observation that hydrophobic interactions between amino acid residues are the driving force for proteins folding into their native state. [1]

  3. Hydrophobic collapse - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic_collapse

    The driving force behind protein folding is not well understood, hydrophobic collapse is a theory, one of many, that is thought to influence how a nascent polypeptide will fold into its native state. Hydrophobic collapse can be visualized as part of the folding funnel model which leads a protein to its lowest kinetically accessible energy state.

  4. Protein–protein interaction - Wikipedia

    en.wikipedia.org/wiki/Proteinprotein_interaction

    Proteinprotein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that ...

  5. Beta barrel - Wikipedia

    en.wikipedia.org/wiki/Beta_barrel

    Lipocalins are typically eight-stranded up-and-down beta barrel proteins that are secreted into the extracellular environment. A distinctive feature is their ability to bind and transport small hydrophobic molecules in the barrel calyx. Examples of the family include retinol binding proteins (RBPs) and major urinary proteins (Mups).

  6. Transmembrane domain - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_domain

    A transmembrane domain (TMD, TM domain) is a membrane-spanning protein domain.TMDs may consist of one or several alpha-helices or a transmembrane beta barrel.Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues.

  7. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    The hydrophobic effect is the phenomenon in which the hydrophobic chains of a protein collapse into the core of the protein (away from the hydrophilic environment). [12] In an aqueous environment, the water molecules tend to aggregate around the hydrophobic regions or side chains of the protein, creating water shells of ordered water molecules ...

  8. Protein adsorption - Wikipedia

    en.wikipedia.org/wiki/Protein_adsorption

    In order for proteins to adsorb, they must first come into contact with the surface through one or more of these major transport mechanisms: diffusion, thermal convection, bulk flow, or a combination thereof. When considering the transport of proteins, it is clear how concentration gradients, temperature, protein size and flow velocity will ...

  9. Aquaporin - Wikipedia

    en.wikipedia.org/wiki/Aquaporin

    Schematic diagram of the 2D structure of aquaporin 1 depicting the six transmembrane alpha-helices and the five interhelical loop regions A-E The 3D structure of aquaporin Z highlighting the 'hourglass'-shaped water channel that cuts through the center of the protein. Aquaporin proteins are composed of a bundle of six transmembrane α-helices ...