Search results
Results from the WOW.Com Content Network
The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
Linear extrapolation means creating a tangent line at the end of the known data and extending it beyond that limit. Linear extrapolation will only provide good results when used to extend the graph of an approximately linear function or not too far beyond the known data.
A (1, 1) = Trapezoidal (f, tStart, tEnd, h, y0) % Each row of the matrix requires one call to Trapezoidal % This loops starts by filling the second row of the matrix, % since the first row was computed above for i = 1: maxRows-1 % Starting at i = 1, iterate at most maxRows - 1 times % Halve the previous value of h since this is the start of a ...
Multivariate interpolation — the function being interpolated depends on more than one variable Barnes interpolation — method for two-dimensional functions using Gaussians common in meteorology; Coons surface — combination of linear interpolation and bilinear interpolation; Lanczos resampling — based on convolution with a sinc function
For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [3]
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
The process of interpolation maps the function f to a polynomial p. This defines a mapping X from the space C([a, b]) of all continuous functions on [a, b] to itself. The map X is linear and it is a projection on the subspace () of polynomials of degree n or less. The Lebesgue constant L is defined as the operator norm of X.