Search results
Results from the WOW.Com Content Network
Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3] He calls it "a theoretical rectification formula giving the maximum rectification", with a footnote referencing a paper by Carl Wagner , Physikalische Zeitschrift 32 , pp ...
The Shockley ideal diode equation or the diode law (named after the bipolar junction transistor co-inventor William Bradford Shockley) models the exponential current–voltage (I–V) relationship of diodes in moderate forward or reverse bias. The article Shockley diode equation provides details.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
The PIN diode obeys the standard diode equation for low-frequency signals. At higher frequencies, the diode looks like an almost perfect (very linear, even for large signals) resistor. The P-I-N diode has a relatively large stored charge adrift in a thick intrinsic region. At a low-enough frequency, the stored charge can be fully swept and the ...
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material, v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and; μ e is the electron mobility.
While standard silicon diodes have a forward voltage drop of about 0.7 V and germanium diodes 0.3 V, Schottky diodes' voltage drop at forward biases of around 1 mA is in the range of 0.15 V to 0.46 V (see the 1N5817 [6] and 1N5711 [7]), which makes them useful in voltage clamping applications and prevention of transistor saturation.
In a p-n junction diode, electrons and holes are the minority charge carriers in the p-region and the n-region, respectively. In an unbiased junction, due to the diffusion of charge carriers, the diffusion current, which flows from the p to n region, is exactly balanced by the equal and opposite drift current. [ 1 ]
Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes).This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.