Search results
Results from the WOW.Com Content Network
The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Nicolaas Jan Dirk "Nico" Nagelkerke (born 1951) is a Dutch biostatistician and epidemiologist. As of 2012, he was a professor of biostatistics at the United Arab Emirates University . He previously taught at the University of Leiden in the Netherlands .
If, for example, the out-of-sample mean squared error, also known as the mean squared prediction error, is substantially higher than the in-sample mean square error, this is a sign of deficiency in the model. A development in medical statistics is the use of out-of-sample cross validation techniques in meta-analysis.
Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]
Using the change in R-square is more appropriate than mere raw correlations, because the raw correlations do not reflect the overlap of the newly introduced measure and the existing measures. [3] For example, the College Board has used multiple regression models to assess the incremental validity of a revised SAT test. [4]
Nagelkerke's pseudo-R^2 is a scaled version of Cox and Snell's R^2 that can be obtained from a generalized linear model when dealing with binary responses. When using binary responses, a better coefficient of determination has been suggested in genetic profile analyses (see below).
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.