Search results
Results from the WOW.Com Content Network
This angle can then be measured either by looking through a telescope, [clarification needed] or with a digital photodetector placed in the focal plane of a lens. The refractive index n of the liquid can then be calculated from the maximum transmission angle θ as n = n G sin θ, where n G is the refractive index of the prism. [66]
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
At a dielectric interface from n 1 to n 2, there is a particular angle of incidence at which R p goes to zero and a p-polarised incident wave is purely refracted, thus all reflected light is s-polarised. This angle is known as Brewster's angle, and is around 56° for n 1 = 1 and n 2 = 1.5 (typical glass).
An angle larger than a straight angle but less than 1 turn (between 180° and 360°) is called a reflex angle. An angle equal to 1 turn (360° or 2 π radians) is called a full angle, complete angle, round angle or perigon. An angle that is not a multiple of a right angle is called an oblique angle.
Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
As with any simple polygon, the sum of the internal angles of a concave polygon is π ×(n − 2) radians, equivalently 180×(n − 2) degrees (°), where n is the number of sides. It is always possible to partition a concave polygon into a set of convex polygons.
In general, reflection increases with increasing angle of incidence, and with increasing absorptivity at the boundary. The Fresnel equations describe the physics at the optical boundary. Reflection may occur as specular, or mirror-like, reflection and diffuse reflection .