enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods.

  3. Deterministic global optimization - Wikipedia

    en.wikipedia.org/wiki/Deterministic_global...

    Deterministic global optimization methods are typically used when locating the global solution is a necessity (i.e. when the only naturally occurring state described by a mathematical model is the global minimum of an optimization problem), when it is extremely difficult to find a feasible solution, or simply when the user desires to locate the ...

  4. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Rosario Toscano: Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods, Springer, ISBN 978-3-031-52458-5 (2024). Immanuel M. Bomze, Tibor Csendes, Reiner Horst and Panos M. Pardalos: Developments in Global Optimization, Kluwer Academic, ISBN 978-1-4419-4768-0 (2010).

  5. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Stochastic optimization is an umbrella set of methods that includes simulated annealing and numerous other approaches. Particle swarm optimization is an algorithm modeled on swarm intelligence that finds a solution to an optimization problem in a search space, or models and predicts social behavior in the presence of objectives.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =. However, to optimize a twice-differentiable f {\displaystyle f} , our goal is to find the roots of f ′ {\displaystyle f'} .

  7. Stochastic optimization - Wikipedia

    en.wikipedia.org/wiki/Stochastic_optimization

    [8] [9] Further, the injected randomness may enable the method to escape a local optimum and eventually to approach a global optimum. Indeed, this randomization principle is known to be a simple and effective way to obtain algorithms with almost certain good performance uniformly across many data sets, for many sorts of problems.

  8. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  9. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.