Search results
Results from the WOW.Com Content Network
Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .
A number of methods for constructing regular Hadamard matrices are known, and some exhaustive computer searches have been done for regular Hadamard matrices with specified symmetry groups, but it is not known whether every even perfect square is the order of a regular Hadamard matrix. Bush-type Hadamard matrices are regular Hadamard matrices of ...
The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k.The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.
The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix.This is a matrix such that () = holds for all {,}, where the message is viewed as a row vector and the vector-matrix product is understood in the vector space over the finite field.
The Kronecker product of two Hadamard matrices of sizes m and n is an Hadamard matrix of size mn. By forming Kronecker products of matrices from the Paley construction and the 2 × 2 matrix, = [], Hadamard matrices of every permissible size up to 100 except for 92 are produced.
In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHT h) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order n = 2 m {\displaystyle n=2^{m}} would have a computational complexity of O( n 2 {\displaystyle n^{2}} ) .
Two complex Hadamard matrices are called equivalent, written , if there exist diagonal unitary matrices , and permutation matrices, such that =. Any complex Hadamard matrix is equivalent to a dephased Hadamard matrix, in which all elements in the first row and first column are equal to unity.
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.