Search results
Results from the WOW.Com Content Network
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by Köthe (1930), based on a suggestion of Wedderburn (1908). In the next few years several other radicals were discovered, of which the most important example is the Jacobson ...
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
In other words: "The only element of a Noetherian ring in all powers of J is 0." The original conjecture posed by Jacobson in 1956 [ 1 ] asked about noncommutative one-sided Noetherian rings, however Israel Nathan Herstein produced a counterexample in 1965, [ 2 ] and soon afterwards, Arun Vinayak Jategaonkar produced a different example which ...
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
The classical ring of quotients for any commutative Noetherian ring is a semilocal ring. The endomorphism ring of an Artinian module is a semilocal ring. Semi-local rings occur for example in algebraic geometry when a (commutative) ring R is localized with respect to the multiplicatively closed subset S = ∩ (R \ p i ) , where the p i are ...
In algebra, the real radical of an ideal I in a polynomial ring with real coefficients is the largest ideal containing I with the same (real) vanishing locus. It plays a similar role in real algebraic geometry that the radical of an ideal plays in algebraic geometry over an algebraically closed field .
The nilpotent elements of a commutative ring R form an ideal of R, called the nilradical of R; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring R/I is reduced if and only if I is a radical ...