Search results
Results from the WOW.Com Content Network
The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced.
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
A related term is the heat of combustion, which is the chemical energy released due to a combustion reaction and of interest in the study of fuels. Food is similar to hydrocarbon and carbohydrate fuels, and when it is oxidized, its energy release is similar (though assessed differently than for a hydrocarbon fuel — see food energy).
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s −1 and t 1/2 ~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room ...
Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined. Free energy relationships are often used to calculate equilibrium constants since they are experimentally difficult to ...
Therefore, only relative free energy values, or changes in free energy, are physically meaningful. The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1]