Search results
Results from the WOW.Com Content Network
For example, if the branching factor is 10, then there will be 10 nodes one level down from the current position, 10 2 (or 100) nodes two levels down, 10 3 (or 1,000) nodes three levels down, and so on. The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm.
62 is: the eighteenth discrete semiprime ( 2 × 31 {\displaystyle 2\times 31} ) and tenth of the form (2.q), where q is a higher prime. with an aliquot sum of 34 ; itself a semiprime , within an aliquot sequence of seven composite numbers (62, 34 , 20 , 22 , 14 , 10 , 8 , 7 , 1 ,0) to the Prime in the 7 -aliquot tree.
If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:
65 as the sum of distinct positive squares. 65 is the nineteenth distinct semiprime, [1] (5.13); and the third of the form (5.q), where q is a higher prime. 65 has a prime aliquot sum of 19 within an aliquot sequence of one composite numbers (65,19,1,0) to the prime; as the first member' of the 19-aliquot tree. It is an octagonal number. [2]
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.