Search results
Results from the WOW.Com Content Network
In a more theoretical context a function object may be considered to be any instance of the class of functions, especially in languages such as Common Lisp in which functions are first-class objects. The ML family of functional programming languages uses the term functor to represent a mapping from modules to modules, or from types to types and ...
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
According to this principle, member variables of a class are made private to hide and protect them from other code, and can only be modified by a public member function (the mutator method), which takes the desired new value as a parameter, optionally validates it, and modifies the private member variable.
In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state and behavior that are each either associated with a particular object or with all objects of that class. [1] [2]
In garbage-collected languages, such as Java, [4]: 26, 29 C#, [5]: 208–209 and Python, destructors are known as finalizers. They have a similar purpose and function to destructors, but because of the differences between languages that utilize garbage-collection and languages with manual memory management, the sequence in which they are called ...
In languages which support first-class functions and currying, map may be partially applied to lift a function that works on only one value to an element-wise equivalent that works on an entire container; for example, map square is a Haskell function which squares each element of a list.
The factory method design pattern solves problems such as: How can an object's subclasses redefine its subsequent and distinct implementation? The pattern involves creation of a factory method within the superclass that defers the object's creation to a subclass's factory method.