Search results
Results from the WOW.Com Content Network
Lidar (/ ˈ l aɪ d ɑːr /, also LIDAR, an acronym of "light detection and ranging" [1] or "laser imaging, detection, and ranging" [2]) is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver.
A national lidar dataset refers to a high-resolution lidar dataset comprising most—and ideally all—of a nation's terrain. Datasets of this type typically meet specified quality standards and are publicly available for free (or at nominal cost) in one or more uniform formats from government or academic sources.
Currently, the best source for nationwide LiDAR availability from public sources is the United States Interagency Elevation Inventory (USIEI). [1] The USIEI is a collaborative effort of NOAA and the U.S. Geological Survey, with contributions from the Federal Emergency Management Agency, the Natural Resources Conservation Service, the US Army Corps of Engineers, and the National Park Service.
Accurately measured data is necessary for the LiDAR data to be geo-referenced such as locating the data in a local or global coordinates system. Therefore, the produced LiDAR can be overlaid onto the aerial photographs collected previously to observe the topography changes over time.
The LAS (LASer) format is a file format designed for the interchange and archiving of lidar point cloud data. It is an open, binary format specified by the American Society for Photogrammetry and Remote Sensing (ASPRS). The format is widely used [1] and regarded as an industry standard for lidar data. [2] [3]
where P(r) is the power of the backscattered radiation received by the lidar telescope in distance r, E is transmitted laser-pulse energy, L is the lidar constant summarizing its optical and detection characteristics, O(r) is the overlap function, [21] and / and / are the aerosol/molecular backscatter- and extinction coefficient respectively.
Aerial survey is a method of collecting geomatics or other imagery data using airplanes, helicopters, UAVs, balloons, or other aerial methods. Typical data collected includes aerial photography , Lidar , remote sensing (using various visible and invisible bands of the electromagnetic spectrum , such as infrared , gamma , or ultraviolet ) and ...
To gather elevation data, Buckeye uses an Optech ALTM 3100 (Airborne Laser Terrain Mapper) LIDAR sensor system, which emits a laser pulse and records the time it takes for the energy to hit the target and return to the receiver. [3]