enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  3. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]

  4. Chebyshev distance - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_distance

    The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length √ 2 r, oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance.

  5. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  7. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.

  8. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Wasserstein metrics measure the distance between two measures on the same metric space. The Wasserstein distance between two measures is, roughly speaking, the cost of transporting one to the other. The set of all m by n matrices over some field is a metric space with respect to the rank distance (,) = ().

  9. Minkowski distance - Wikipedia

    en.wikipedia.org/wiki/Minkowski_distance

    The Minkowski distance can also be viewed as a multiple of the power mean of the component-wise differences between and . The following figure shows unit circles (the level set of the distance function where all points are at the unit distance from the center) with various values of :