enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  3. Fáry's theorem - Wikipedia

    en.wikipedia.org/wiki/Fáry's_theorem

    Induction step for proof of Fáry's theorem. One way of proving Fáry's theorem is to use mathematical induction. [1] Let G be a simple plane graph with n vertices; we may add edges if necessary so that G is a maximally plane graph. If n < 3, the result is trivial.

  4. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.

  5. Brauer's theorem on induced characters - Wikipedia

    en.wikipedia.org/wiki/Brauer's_theorem_on_induced...

    A precursor to Brauer's induction theorem was Artin's induction theorem, which states that |G| times the trivial character of G is an integer combination of characters which are each induced from trivial characters of cyclic subgroups of G. Brauer's theorem removes the factor |G|, but at the expense of expanding the collection of subgroups used.

  6. Metamath - Wikipedia

    en.wikipedia.org/wiki/Metamath

    Metamath is a formal language and an associated computer program (a proof assistant) for archiving and verifying mathematical proofs. [2] Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.

  7. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .

  8. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.