Search results
Results from the WOW.Com Content Network
The first of the cooling load factors used in this method is the CLTD, or the Cooling Load Temperature Difference. This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor.
Thermal Design Power (TDP), also known as thermal design point, is the maximum amount of heat that a computer component (like a CPU, GPU or system on a chip) can generate and that its cooling system is designed to dissipate during normal operation at a non-turbo clock rate (base frequency).
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
The cooling load [3] is calculated to select HVAC equipment that has the appropriate cooling capacity to remove heat from the zone. A zone is typically defined as an area with similar heat gains, similar temperature and humidity control requirements, or an enclosed space within a building with the purpose to monitor and control the zone's temperature and humidity with a single sensor e.g ...
Space cooling on one hand, and equipment cooling on the other, cannot be viewed as two isolated parts of the overall thermal challenge. The main purpose of an equipment facility's air-distribution system is to distribute conditioned air in such a way that the electronic equipment is cooled effectively.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Fig.1 Schematic diagram of a Stirling cooler. The system has one piston at ambient temperature T a and one piston at low temperature T L. The basic type of Stirling-type cooler is depicted in Fig.1. It consists of (from left to right): a piston; a compression space and heat exchanger (all at ambient temperature T a) a regenerator; a heat exchanger