Search results
Results from the WOW.Com Content Network
Therefore, the covariance matrix R of the components of a white noise vector w with n elements must be an n by n diagonal matrix, where each diagonal element R ii is the variance of component w i; and the correlation matrix must be the n by n identity matrix.
Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained by estimating the covariance (e.g. by maximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. by Cholesky decomposition).
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The (potentially time-dependent) autocorrelation matrix (also called second moment) of a (potentially time-dependent) random vector = (, …,) is an matrix containing as elements the autocorrelations of all pairs of elements of the random vector .
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random ...
First, white noise is a generalized stochastic process with independent values at each time. [12] Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.
When N(t) is colored (correlated in time) Gaussian noise with zero mean and covariance function (,) = [() ()], we cannot sample independent discrete observations by evenly spacing the time. Instead, we can use K–L expansion to decorrelate the noise process and get independent Gaussian observation 'samples'.