Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
[19] [20] Examples of quotients of dimension one include calculating slopes or some unit conversion factors. Another set of examples is mass fractions or mole fractions, often written using parts-per notation such as ppm (= 10 −6), ppb (= 10 −9), and ppt (= 10 −12), or perhaps confusingly as ratios of two identical units (kg/kg or mol/mol).
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
Print/export Download as PDF ... Dimensionless quantities of chemistry (4 P) Countable quantities (1 C, 4 P) ... Dimensionless quantity * List of dimensionless ...
Print/export Download as PDF; Printable version; ... Pages in category "Dimensionless quantities of chemistry" The following 4 pages are in this category, out of 4 ...
Dimensionless quantities of chemistry (4 P) Pages in category "Dimensionless numbers of chemistry" The following 26 pages are in this category, out of 26 total.
Derived quantity Symbol Description SI derived unit Dimension Comments Absement: A: Measure of sustained displacement: the first integral with respect to time of displacement m⋅s L T: vector Acceleration: a →: Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a