enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    Matrix multiplication completed in 2n-1 steps for two n×n matrices on a cross-wired mesh. There are a variety of algorithms for multiplication on meshes . For multiplication of two n × n on a standard two-dimensional mesh using the 2D Cannon's algorithm , one can complete the multiplication in 3 n -2 steps although this is reduced to half ...

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science. As of January 2024, the best bound on the asymptotic complexity of a matrix multiplication algorithm is O(n 2.371339). [2]

  5. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]

  6. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.

  7. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    If we are only multiplying two matrices, there is only one way to multiply them, so the minimum cost is the cost of doing this. In general, we can find the minimum cost using the following recursive algorithm: Take the sequence of matrices and separate it into two subsequences. Find the minimum cost of multiplying out each subsequence.

  8. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  9. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    The most time-consuming operation of the algorithm is the multiplication of matrix by a vector, so it is effective for a very large sparse matrix with appropriate implementation. The speed of convergence is like ( λ 1 / λ 2 ) k {\displaystyle (\lambda _{1}/\lambda _{2})^{k}} (see a later section ).