Search results
Results from the WOW.Com Content Network
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration. This implies that when a loop terminates correctly, both the exit condition and the loop invariant are satisfied. Loop invariants are used to monitor specific properties of a loop during successive iterations.
The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir. The above trick used in Python also works in Elixir, but the compiler will throw a warning if it spots this.
foreach is usually used in place of a standard for loop statement. Unlike other for loop constructs, however, foreach loops [1] usually maintain no explicit counter: they essentially say "do this to everything in this set", rather than "do this x times". This avoids potential off-by-one errors and makes code simpler to read.
Because of Lisp's early heritage in list processing, it has a wide array of higher-order functions relating to iteration over sequences. In many cases where an explicit loop would be needed in other languages (like a for loop in C) in Lisp the same task can be accomplished with a higher-order function. (The same is true of many functional ...
first checks whether x is less than 5, which it is, so then the {loop body} is entered, where the printf function is run and x is incremented by 1. After completing all the statements in the loop body, the condition, (x < 5), is checked again, and the loop is executed again, this process repeating until the variable x has the value 5.
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler.
Infinite loops can be implemented using various control flow constructs. Most commonly, in unstructured programming this is jump back up , while in structured programming this is an indefinite loop (while loop) set to never end, either by omitting the condition or explicitly setting it to true, as while (true) ....