Search results
Results from the WOW.Com Content Network
The first four partial sums of the series 1 + 2 + 3 + 4 + ⋯.The parabola is their smoothed asymptote; its y-intercept is −1/12. [1]The infinite series whose terms ...
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form ), as well as a proof that this sum is correct. Euler found the exact sum to be π 2 / 6 {\displaystyle \pi ^{2}/6} and announced this discovery in 1735.
[3] The divergence of the harmonic series was first proven in 1350 by Nicole Oresme. [2] [4] Oresme's work, and the contemporaneous work of Richard Swineshead on a different series, marked the first appearance of infinite series other than the geometric series in mathematics. [5] However, this achievement fell into obscurity. [6]
(4) the result is 1 / 2 (3) the result is 1 (2) the result is infinite (30) no answer. The researcher, Giorgio Bagni, interviewed several of the students to determine their reasoning. Some 16 of them justified an answer of 0 using logic similar to that of Grandi and Riccati. Others justified 1 / 2 as being the average of 0 and 1 ...
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
The n-th harmonic number, which is the sum of the reciprocals of the first n positive integers, is never an integer except for the case n = 1. Moreover, József Kürschák proved in 1918 that the sum of the reciprocals of consecutive natural numbers (whether starting from 1 or not) is never an integer.