Search results
Results from the WOW.Com Content Network
Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre , is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule , which is the unit of energy, the latter ...
The simplest kind of couple consists of two equal and opposite forces whose lines of action do not coincide. This is called a "simple couple". [1] The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre.
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]
Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be ...
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
Both energy and torque can be expressed as a product of a force vector with a displacement vector (hence pounds and feet); energy is the scalar product of the two, and torque is the vector product. Although calling the torque unit "pound-foot" has been academically suggested, both are still commonly called "foot-pound" in colloquial usage.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
If the amount of force is 2 N, and the lever arm 0,6 m, the amount of torque is 1,2 Nm. At the instant shown, the force gives to the disc the angular acceleration α = τ /I = 7,5 rad/s 2, and to its center of mass it gives the linear acceleration a = F/m = 4 m/s 2.