Search results
Results from the WOW.Com Content Network
Another application of this theorem provides a geometrical proof of the AM–GM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [note 1
Mazur's torsion theorem (algebraic geometry) Mean value theorem ; Measurable Riemann mapping theorem (conformal mapping) Mellin inversion theorem (complex analysis) Menelaus's theorem ; Menger's theorem (graph theory) Mercer's theorem (functional analysis) Mermin–Wagner theorem ; Mertens's theorems (number theory)
The power mean could be generalized further to the generalized f-mean: (, …,) = (= ()) This covers the geometric mean without using a limit with f(x) = log(x). The power mean is obtained for f(x) = x p. Properties of these means are studied in de Carvalho (2016).
The arithmetic–geometric mean of two numbers, a 0 and b 0, is found by calculating the limit of the sequences + = +, + =, which both converge to the same limit. If = and = then the limit is () where () is the complete elliptic integral of the first kind
Notice that the a-mean as defined above only has the usual properties of a mean (e.g., if the mean of equal numbers is equal to them) if + + =. In the general case, one can consider instead [] / (+ +), which is called a Muirhead mean. [1] Examples