Search results
Results from the WOW.Com Content Network
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator. [ 3 ] [ 4 ] In the absence of inversions and not considering moisture , the temperature lapse rate for this layer is 6.5 °C per kilometer, on average, according to the U.S ...
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and ...
The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [ clarification needed ] on the insolation received, due to the increased presence of heavier gases such as monatomic oxygen.
Following the tropopause is the stratosphere. This layer extends from the tropopause to the stratopause, which is located at an altitude of about 50 km (31 mi). Temperatures remain constant with height from the tropopause to an altitude of 20 km (12 mi), after which they start to increase with height.
(i) the exosphere at 600+ km; (ii) the thermosphere at 600 km; (iii) the mesosphere at 95–120 km; (iv) the stratosphere at 50–60 km; and (v) the troposphere at 8–15 km. The distance from the planetary surface to the edge of the stratosphere is ±50 km, less than 1.0% of the radius of the Earth.
Earth's turbopause lies near the mesopause, at the intersection of the mesosphere and the thermosphere, at an altitude of roughly 90 km (56 mi). [2] Some other turbopauses in the Solar System that are known include Venus' turbopause at about 130–135 km (81–84 mi), Mars' at about 130 km (81 mi), Jupiter's at roughly 385 km (239 mi), and ...