Ad
related to: modular arithmetic identities practice exam test 1education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
3 Modular arithmetic. 4 Arithmetic functions. 5 Analytic number theory: additive problems. ... 14.1 Primality tests. 14.2 Integer factorization.
Indeed, a is coprime to n if and only if gcd(a, n) = 1. Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.
See modular arithmetic for notation and terminology. The roots of unity modulo n are exactly the integers that are coprime with n . In fact, these integers are roots of unity modulo n by Euler's theorem , and the other integers cannot be roots of unity modulo n , because they are zero divisors modulo n .
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n.That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n).
Ad
related to: modular arithmetic identities practice exam test 1education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama