enow.com Web Search

  1. Ad

    related to: modular arithmetic identities practice exam test 1
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    3 Modular arithmetic. 4 Arithmetic functions. 5 Analytic number theory: additive problems. ... 14.1 Primality tests. 14.2 Integer factorization.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Indeed, a is coprime to n if and only if gcd(a, n) = 1. Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined.

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  7. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.

  8. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    See modular arithmetic for notation and terminology. The roots of unity modulo n are exactly the integers that are coprime with n . In fact, these integers are roots of unity modulo n by Euler's theorem , and the other integers cannot be roots of unity modulo n , because they are zero divisors modulo n .

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n.That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n).

  1. Ad

    related to: modular arithmetic identities practice exam test 1