enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Ranknullity theorem. The ranknullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Rank_(graph_theory)

    Equivalently, the rank of a graph is the rank of the oriented incidence matrix associated with the graph. [2] Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti ...

  4. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the ranknullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  5. Category:Isomorphism theorems - Wikipedia

    en.wikipedia.org/wiki/Category:Isomorphism_theorems

    These theorems are generalizations of some of the fundamental ideas from linear algebra, notably the ranknullity theorem, and are encountered frequently in group theory. The isomorphism theorems are also fundamental in the field of K-theory , and arise in ostensibly non-algebraic situations such as functional analysis (in particular the ...

  6. Isomorphism theorems - Wikipedia

    en.wikipedia.org/wiki/Isomorphism_theorems

    The isomorphism theorems were formulated in some generality for homomorphisms of modules by Emmy Noether in her paper Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern, which was published in 1927 in Mathematische Annalen.

  7. Circuit rank - Wikipedia

    en.wikipedia.org/wiki/Circuit_rank

    In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis).

  8. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of M is given by m − n + c, where, c is the number of components of the graph and n − c is the rank of the oriented incidence matrix. This name is rarely used; the number is more commonly known as the cycle rank, cyclomatic number, or circuit rank of the graph. It is equal to the rank of the cographic matroid of the graph.

  9. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    For a transformation between finite-dimensional vector spaces, this is just the difference dim(V) − dim(W), by ranknullity. This gives an indication of how many solutions or how many constraints one has: if mapping from a larger space to a smaller one, the map may be onto, and thus will have degrees of freedom even without constraints.