enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  3. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...

  4. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  5. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  6. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]

  7. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only ...

  8. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  9. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.