Search results
Results from the WOW.Com Content Network
While gravitational lensing preserves surface brightness, as dictated by Liouville's theorem, lensing does change the apparent solid angle of a source. The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by
This effect would make the mass act as a kind of gravitational lens. However, as he only considered the effect of deflection around a single star, he seemed to conclude that the phenomenon was unlikely to be observed for the foreseeable future since the necessary alignments between stars and observer would be highly improbable.
For a source right behind the lens, θ S = 0, the lens equation for a point mass gives a characteristic value for θ 1 that is called the Einstein angle, denoted θ E. When θ E is expressed in radians, and the lensing source is sufficiently far away, the Einstein Radius, denoted R E, is given by =. [2]
The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology. The theorem states that the number of multiple images produced by a bounded transparent lens must be odd .
Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended ...
Moreover, taking covariant derivatives of the field equations and applying the Bianchi identities, it is found that a suitably varying amount/motion of non-gravitational energy–momentum can cause ripples in curvature to propagate as gravitational radiation, even across vacuum regions, which contain no matter or non-gravitational fields.
The key difference between an embedded lens and a traditional lens is that the mass of a standard lens contributes to the mean of the cosmological density, whereas that of an embedded lens does not. Consequently, the gravitational potential of an embedded lens has a finite range, i.e., there is no lensing effect outside of the void.
Although this formula is approximate, it is accurate for most measurements of gravitational lensing, due to the smallness of the ratio r s /b. For light grazing the surface of the Sun, the approximate angular deflection is roughly 1.75 arcseconds. [2] This is twice the value predicted by calculations using the Newtonian theory of gravity.