Search results
Results from the WOW.Com Content Network
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
A conical shock wave can form in this situation, with the vertex of the shock wave lying at the vertex of the solid cone. If it were a two-dimensional problem, i.e., for a supersonic flow past a wedge, then the incoming stream would have deflected through an angle χ {\displaystyle \chi } upon crossing the shock wave so that streamlines behind ...
In mathematics, the Clark–Ocone theorem (also known as the Clark–Ocone–Haussmann theorem or formula) is a theorem of stochastic analysis.It expresses the value of some function F defined on the classical Wiener space of continuous paths starting at the origin as the sum of its mean value and an Itô integral with respect to that path.
The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:
The trace (purple) of the tangents of a conical spiral with a hyperbolic spiral as floor plan. The black line is the asymptote of the hyperbolic spiral. The collection of intersection points of the tangents of a conical spiral with the --plane (plane through the cone's apex) is called its tangent trace.
Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.
In mathematics, specifically in order theory and functional analysis, if is a cone at the origin in a topological vector space such that and if is the neighborhood filter at the origin, then is called normal if = [], where []:= {[]:} and where for any subset , []:= (+) is the -saturatation of . [1]
If projected onto the xyw, xzw, or yzw hyperplanes, its image is a solid cone. If projected onto an oblique hyperplane, its image is either an ellipsoid or a solid cone with an ellipsoidal base (resembling an ice cream cone). These images are the analogues of the possible images of the solid cone projected to 2 dimensions.