Search results
Results from the WOW.Com Content Network
Morris Muskat et al. [1] [2] developed the governing equations for multiphase flow (one vector equation for each fluid phase) in porous media as a generalisation of Darcy's equation (or Darcy's law) for water flow in porous media.
The very shallow flow of water in the subsurface (the upper 3 m) is pertinent to the fields of soil science, agriculture, and civil engineering, as well as to hydrogeology. The general flow of fluids (water, hydrocarbons, geothermal fluids, etc.) in deeper formations is also a concern of geologists, geophysicists, and petroleum geologists.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. [2]
Water resources law (in some jurisdictions, shortened to "water law") is the field of law dealing with the ownership, control, and use of water as a resource. It is most closely related to property law , and is distinct from laws governing water quality .
The maximum rate at that water can enter soil in a given condition is the infiltration capacity. If the arrival of the water at the soil surface is less than the infiltration capacity, it is sometimes analyzed using hydrology transport models, mathematical models that consider infiltration, runoff, and channel flow to predict river flow rates ...
A hydrologic model is a simplification of a real-world system (e.g., surface water, soil water, wetland, groundwater, estuary) that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models. MODFLOW, a computational groundwater flow model based on methods ...