enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion

    For example, a steel block with a volume of 1 cubic meter might expand to 1.002 cubic meters when the temperature is raised by 50 K. This is an expansion of 0.2%. If a block of steel has a volume of 2 cubic meters, then under the same conditions, it would expand to 2.004 cubic meters, again an expansion of 0.2%.

  3. Volume correction factor - Wikipedia

    en.wikipedia.org/wiki/Volume_Correction_Factor

    In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1]

  4. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used. In the second case, additional work is done as the volume changes, so the amount of heat required to raise the gas temperature (the specific heat capacity) is higher for this constant-pressure case.

  5. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture.Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [1] [2] and is thus expressed in terms of energy per unit area.

  6. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).

  7. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    This is a derivation to obtain an expression for for an ideal gas. An ideal gas has the equation of state: = where P = pressure V = volume n = number of moles R = universal gas constant T = temperature. The ideal gas equation of state can be arranged to give:

  8. Chvorinov's rule - Wikipedia

    en.wikipedia.org/wiki/Chvorinov's_rule

    Where the modulus M is the ratio of the casting's volume to its surface area: M = V A {\displaystyle M={\frac {V}{A}}} The mold constant B depends on the properties of the metal, such as density, heat capacity , heat of fusion and superheat, and the mold, such as initial temperature, density, thermal conductivity , heat capacity and wall thickness.

  9. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    The largest and the lowest solution are the gas and liquid reduced volume. In this situation, the Maxwell construction is sometimes used to model the pressure as a function of molar volume. The compressibility factor = / is often used to characterize non-ideal behavior. For the van der Waals equation in reduced form, this becomes