Search results
Results from the WOW.Com Content Network
A Sudoku is a type of Latin square with the additional property that each element occurs exactly once in sub-sections of size √ n × √ n (called boxes). Combinatorial explosion occurs as n increases, creating limits to the properties of Sudokus that can be constructed, analyzed, and solved, as illustrated in the following table.
For example, in a five-draw poker game, the event at least one player holds a four-of-a-kind formation can be identified with the set of all combinations of (xxxxy) type, where x and y are distinct values of cards. This set has 13C(4,4)(52-4)=624 combinations. Possible combinations are (3♠ 3♣ 3♥ 3♦ J♣) or (7♠ 7♣ 7♥ 7♦ 2♣).
The solution to this particular problem is given by the binomial coefficient (+), which is the number of subsets of size k − 1 that can be formed from a set of size n + k − 1. If, for example, there are two balls and three bins, then the number of ways of placing the balls is ( 2 + 3 − 1 3 − 1 ) = ( 4 2 ) = 6 {\displaystyle {\tbinom {2 ...
The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.
Combinatorial modelling is the process which lets us identify a suitable mathematical model to reformulate a problem. These combinatorial models will provide, through the combinatorics theory, the operations needed to solve the problem.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
A solution to Kirkman's schoolgirl problem with vertices denoting girls and colours denoting days of the week [1] Kirkman's schoolgirl problem is a problem in combinatorics proposed by Thomas Penyngton Kirkman in 1850 as Query VI in The Lady's and Gentleman's Diary (pg.48). The problem states:
The book Winning Ways for your Mathematical Plays also contains a detailed analysis of the Soma cube problem. There are 240 distinct solutions of the Soma cube puzzle, excluding rotations and reflections: these are easily generated by a simple recursive backtracking search computer program similar to that used for the eight queens puzzle .