Search results
Results from the WOW.Com Content Network
Excel's storage of numbers in binary format also affects its accuracy. [3] To illustrate, the lower figure tabulates the simple addition 1 + x − 1 for several values of x. All the values of x begin at the 15 th decimal, so Excel must take them into account. Before calculating the sum 1 + x, Excel first approximates x as a binary number
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.
Implements the mathematical modulo operator. The returned result is always of the same sign as the modulus or nul, and its absolute value is lower than the absolute value of the modulus. However, this template returns 0 if the modulus is nul (this template should never return a division by zero error).
The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
Such as number modulo 3 := sum of the digits (decimal base) Example: 62837 mod 3 = 6+2+8+3+7 mod 3 = 26 mod 3 = 2+6 mod 3 = 8 mod 3 = 2 Another: number modulo 7 := number lest the last digit - 2 * last digit (decimal base) Example: 62837 mod 7 = 6283-14 mod 7 = 6269 mod 7 = 626-18 mod 7 = 608 mod 7 = 60-16 mod 7 = 44 mod 7 = 2 Ïnteresting would be an algorithm for numbers modulo 31; with that ...