enow.com Web Search

  1. Ad

    related to: how to solve after factoring equations step by step

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E⋅F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler ...

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. It is also sometimes referred to as LR decomposition (factors into left and right triangular matrices).

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    After each step k of the Euclidean algorithm, the norm of the remainder f(r k) is smaller than the norm of the preceding remainder, f(r k−1). Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [144]

  5. Algebraic-group factorisation algorithm - Wikipedia

    en.wikipedia.org/wiki/Algebraic-group...

    Algebraic-group factorisation algorithms are algorithms for factoring an integer N by working in an algebraic group defined modulo N whose group structure is the direct sum of the 'reduced groups' obtained by performing the equations defining the group arithmetic modulo the unknown prime factors p 1, p 2, ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...

  8. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    After both sides of the equation are multiplied by Q(x), one side of the equation is a specific polynomial, and the other side is a polynomial with undetermined coefficients. The equality is possible only when the coefficients of like powers of x are equal. This yields n equations in n unknowns, the c k.)

  9. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.

  1. Ad

    related to: how to solve after factoring equations step by step