Search results
Results from the WOW.Com Content Network
In physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the environment or a bath.In general, these interactions significantly change the dynamics of the system and result in quantum dissipation, such that the information contained in the system is lost to its environment.
Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus ...
One open question remains understanding quantum chaos in systems that have finite-dimensional local Hilbert spaces for which standard semiclassical limits do not apply. Recent works allowed for studying analytically such quantum many-body systems. [10] [11]
The Lindblad master equation describes the evolution of various types of open quantum systems, e.g. a system weakly coupled to a Markovian reservoir. [1] Note that the H appearing in the equation is not necessarily equal to the bare system Hamiltonian, but may also incorporate effective unitary dynamics arising from the system-environment ...
Many-body localization (MBL) is a dynamical phenomenon occurring in isolated many-body quantum systems. It is characterized by the system failing to reach thermal equilibrium , and retaining a memory of its initial condition in local observables for infinite times.
Quantum Monte Carlo is a way to directly study the many-body problem and the many-body wave function beyond these approximations. The most advanced quantum Monte Carlo approaches provide an exact solution to the many-body problem for non-frustrated interacting boson systems, while providing an approximate description of interacting fermion systems.
Studying phase structure in localized systems requires us to first formulate a sharp notion of a phase away from thermal equilibrium. This is done via the notion of eigenstate order: [1] one can measure order parameters and correlation functions in individual energy eigenstates of a many-body system, instead of averaging over several eigenstates as in a Gibbs state.
Extensions to driven-dissipative open quantum systems is given not only for bosonic systems, [4] but also for fermionic systems. [ 5 ] The Keldysh formalism provides a systematic way to study non-equilibrium systems, usually based on the two-point functions corresponding to excitations in the system.