Search results
Results from the WOW.Com Content Network
There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.
[W] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended with 67–119 for the nonconvex uniform polyhedra.
where φ = 1 + √ 5 / 2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...
Order-4 square hosohedral honeycomb; Order-6 triangular hosohedral honeycomb; Hexagonal hosohedral honeycomb [citation needed] Order-2 square tiling honeycomb; Order-2 triangular tiling honeycomb; Order-2 hexagonal tiling honeycomb
In geometry, a polyhedron is a solid in three dimensions with flat faces and straight edges. Every edge has exactly two faces, and every vertex is surrounded by alternating faces and edges. The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices.
A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated digon, t{2} is a square, {4}. An alternated digon, h{2} is a ...
Vertex the (n−5)-face of the 5-polytope; Edge the (n−4)-face of the 5-polytope; Face the peak or (n−3)-face of the 5-polytope; Cell the ridge or (n−2)-face of the 5-polytope; Hypercell or Teron the facet or (n−1)-face of the 5-polytope