Search results
Results from the WOW.Com Content Network
The increased thrust from the C-D nozzle (2,000 lb, 910 kg at sea-level take-off) on this engine raised the speed from Mach 1.6 to almost 2.0 enabling the Air Force to set a world's speed record of 1,207.6 mph (1,943.4 km/h) which was just below Mach 2 for the temperature on that day. The true worth of the C-D nozzle was not realised on the F ...
The compressed air is heated in the combustor and passes through the turbine, then expands in the nozzle to produce a high speed propelling jet [3] Turbojets have a low propulsive efficiency below about Mach 2 [ citation needed ] and produce a lot of jet noise, both a result of the very high velocity of the exhaust.
The propelling nozzle converts a gas turbine or gas generator into a jet engine. Power available in the gas turbine exhaust is converted into a high speed propelling jet by the nozzle. The power is defined by typical gauge pressure and temperature values for a turbojet of 20 psi (140 kPa) and 1,000 °F (538 °C). [18]
The additional shrouding adds drag, however, and Kort nozzles lose their advantage over propellers at about ten knots (18.5 km/h). Kort nozzles may be fixed, with directional control coming from a rudder set in the water flow, or pivoting, where their flow controls the vessel's steering.
The SS.12/AS.12 was basically a scaled-up version of the SS.11/AS.11, with a massive increase in range and warhead weight. The SS.12/AS.12 original mission was primarily to be anti-shipping from naval helicopters and combat aircraft or ground launchers, and secondarily for use against heavy field fortifications.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
It uses carbon composite materials and uses the same basic design for both stages. The plug-cluster aerospike engine puts out 90,000 pounds-force (400 kN) of thrust. The engine has a bell-shaped nozzle that has been cut in half, then stretched to form a ring with the half-nozzle now forming the profile of a plug. [8]
Its function is the same, using a vacuum at the intake to trigger a valve that pulses atmospheric air into the exhaust. The original "iron barrel" style engine did this with a hose from the PAV going to the exhaust pipe, the newer (2003–2009) AVL aluminum engine pulses the gas directly into the exhaust port on the head of the engine itself.