enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    Absolute entropy of strontium. The solid line refers to the entropy of strontium in its normal standard state at 1 atm pressure. The dashed line refers to the entropy of strontium vapor in a non-physical state. The standard entropy change for the formation of a compound from the elements, or for any standard reaction is designated ΔS° form or ...

  3. Standard molar entropy - Wikipedia

    en.wikipedia.org/wiki/Standard_molar_entropy

    Changes in entropy are associated with phase transitions and chemical reactions. Chemical equations make use of the standard molar entropy of reactants and products to find the standard entropy of reaction: [3] = The standard entropy of reaction helps determine whether the reaction will take place spontaneously.

  4. Methanol (data page) - Wikipedia

    en.wikipedia.org/wiki/Methanol_(data_page)

    Uses Antoine's equation: ⁡ = + from Lange's Handbook of Chemistry 10th ed. Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures:

  5. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  6. Standard state - Wikipedia

    en.wikipedia.org/wiki/Standard_state

    The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).

  7. Isopropyl alcohol (data page) - Wikipedia

    en.wikipedia.org/wiki/Isopropyl_alcohol_(data_page)

    Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p: 0.212 J/(mol K) at −200°C Liquid properties Std enthalpy change of formation, Δ f H o liquid: −318.2 kJ/mol Standard molar entropy, S o liquid: 180 J/(mol K) Heat capacity, c p: 2.68 J/(gK) at 20°C-25°C Gas properties Std enthalpy change of formation, Δ f H o gas: −261. ...

  8. Ethylene glycol (data page) - Wikipedia

    en.wikipedia.org/wiki/Ethylene_glycol_(data_page)

    Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Standard enthalpy change of formation, Δ f H o liquid: −460 kJ/mol Standard molar entropy, S o liquid: 166.9 J/(mol·K) Heat capacity, c p: 149.5 J/(mol·K) Gas properties Standard enthalpy change of formation, Δ f H o gas: −3955.4 kJ/mol Standard ...

  9. Ammonia (data page) - Wikipedia

    en.wikipedia.org/wiki/Ammonia_(data_page)

    Std entropy change of vaporization, Δ vap S o +97.41 J/(mol·K) at BP of −33.4 °C Solid properties Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −80.882 ± 0.053 kJ/mol [2] Standard ...