enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero.

  3. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows.

  4. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    The Schwarzschild metric is named in honour of its discoverer Karl Schwarzschild, who found the solution in 1915, only about a month after the publication of Einstein's theory of general relativity. It was the first exact solution of the Einstein field equations other than the trivial flat space solution .

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    An exact solution to the Einstein field equations is the Schwarzschild metric, which corresponds to the external gravitational field of a stationary, uncharged, non-rotating, spherically symmetric body of mass M.

  6. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric is commonly expressed in one of two forms, the Boyer–Lindquist form and the Kerr–Schild form. It can be readily derived from the Schwarzschild metric, using the Newman–Janis algorithm [6] by Newman–Penrose formalism (also known as the spin–coefficient formalism), [7] Ernst equation, [8] or Ellipsoid coordinate ...

  7. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. [1] Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

  8. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial ...

  9. Interior Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Interior_Schwarzschild_metric

    In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface.