enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The curl of the gradient of any continuously twice-differentiable scalar field (i.e., differentiability class) is always the zero vector: =. It can be easily proved by expressing ∇ × ( ∇ φ ) {\displaystyle \nabla \times (\nabla \varphi )} in a Cartesian coordinate system with Schwarz's theorem (also called Clairaut's theorem on equality ...

  4. Gradient pattern analysis - Wikipedia

    en.wikipedia.org/wiki/Gradient_pattern_analysis

    Gradient pattern analysis (GPA) [1] is a geometric computing method for characterizing geometrical bilateral symmetry breaking of an ensemble of symmetric vectors regularly distributed in a square lattice. Usually, the lattice of vectors represent the first-order gradient of a scalar field, here an M x M square amplitude matrix.

  5. Color gradient - Wikipedia

    en.wikipedia.org/wiki/Color_gradient

    A linear, or axial, color gradient. In color science, a color gradient (also known as a color ramp or a color progression) specifies a range of position-dependent colors, usually used to fill a region. In assigning colors to a set of values, a gradient is a continuous colormap, a type of color scheme.

  6. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  7. Optical flow - Wikipedia

    en.wikipedia.org/wiki/Optical_flow

    Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene. [1] [2] Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image. [3]

  8. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  9. Turing pattern - Wikipedia

    en.wikipedia.org/wiki/Turing_pattern

    Three examples of Turing patterns Six stable states from Turing equations, the last one forms Turing patterns. The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.