Search results
Results from the WOW.Com Content Network
In calculus, integration by parametric derivatives, also called parametric integration, [1] is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution.
In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).
Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea. [ 2 ] [ 3 ] [ 4 ] The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog).
Improper integral; Indicator function; Integral of secant cubed; Integral of the secant function; Integral operator; Integral test for convergence; Integration by parts; Integration by parts operator; Integration by reduction formulae; Integration by substitution; Integration using Euler's formula; Integration using parametric derivatives; Itô ...
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.
An integral curve for X passing through p at time t 0 is a curve α : J → M of class C r−1, defined on an open interval J of the real line R containing t 0, such that α ( t 0 ) = p ; {\displaystyle \alpha (t_{0})=p;\,}