Search results
Results from the WOW.Com Content Network
The global proportionality constant for the flow of water through a porous medium is called the hydraulic conductivity (K, unit: m/s). Permeability, or intrinsic permeability, ( k , unit: m 2 ) is a part of this, and is a specific property characteristic of the solid skeleton and the microstructure of the porous medium itself, independently of ...
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
hydrometers, material comparisons (ratio of density of a material to a reference material—usually water) Relative permeability = magnetostatics (ratio of the permeability of a specific medium to free space) Relative permittivity
A medium with a permeability of 1 darcy permits a flow of 1 cm 3 /s of a fluid with viscosity 1 cP (1 mPa·s) under a pressure gradient of 1 atm/cm acting across an area of 1 cm 2. Typical values of permeability range as high as 100,000 darcys for gravel, to less than 0.01 microdarcy for granite. Sand has a permeability of approximately 1 darcy ...
Some fundamental petrophysical properties determined are lithology, porosity, water saturation, permeability, and capillary pressure. [1] The petrophysicists workflow measures and evaluates these petrophysical properties through well-log interpretation (i.e. in-situ reservoir conditions) and core analysis in the laboratory.
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]
In petrophysics, Archie's law is a purely empirical law relating the measured electrical conductivity of a porous rock to its porosity and fluid saturation. It is named after Gus Archie (1907–1978) and laid the foundation for modern well log interpretation, as it relates borehole electrical conductivity measurements to hydrocarbon saturations.