Search results
Results from the WOW.Com Content Network
Vector field; Tensor field; Differential form; Exterior derivative; Lie derivative; pullback (differential geometry) pushforward (differential) jet (mathematics) Contact (mathematics) jet bundle; Frobenius theorem (differential topology) Integral curve
Flat and sharp are mutually inverse isomorphisms of smooth vector bundles, hence, for each p in M, there are mutually inverse vector space isomorphisms between T p M and T ∗ p M. The flat and sharp maps can be applied to vector fields and covector fields by applying them to each point. Hence, if X is a vector field and ω is a covector field,
The base field over which manifolds are defined is no longer assumed to be the real field: it can be any topological field (non-discrete to define differentiability for diff. manifolds). This allows to define easily complex manifolds, by setting the field to C .
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Even so, Johannes Brahms still felt the need to rewrite his C-sharp minor piano quartet in C minor, which was published as Piano Quartet No. 3 in C minor, Op. 60. [citation needed] The last intermezzo from his Three Intermezzi for piano, Op. 117 is in C-sharp minor. Alkan composed the second movement (Adagio) for Concerto for Solo Piano in C ...
The Yamabe problem refers to a conjecture in the mathematical field of differential geometry, which was resolved in the 1980s. It is a statement about the scalar curvature of Riemannian manifolds: Let (M,g) be a closed smooth Riemannian manifold.
The metric tensor (,) induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat ♭ and sharp ♯. A section A ∈ Γ ( T M ) {\displaystyle A\in \Gamma (TM)} corresponds to the unique one-form A ♭ ∈ Ω 1 ( M ) {\displaystyle A^{\flat }\in \Omega ^{1}(M)} such that for all sections X ∈ Γ ( T M ...
The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as Riemannian geometry and general relativity. [original research?]