Search results
Results from the WOW.Com Content Network
Edges with own identity: Edges are primitive entities just like nodes. When multiple edges connect two nodes, these are different edges. A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two. For some authors, the terms pseudograph and multigraph are synonymous.
Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and ...
Under this definition, multiple edges, in which two or more edges connect the same vertices, are not allowed. Example of an undirected multigraph with 3 vertices, 3 edges and 4 loops. For vertices A,B,C and D, the degrees are respectively 4,4,5,1
In particular, a complete graph with n vertices, denoted K n, has no vertex cuts at all, but κ(K n) = n − 1. A vertex cut for two vertices u and v is a set of vertices whose removal from the graph disconnects u and v. The local connectivity κ(u, v) is the size of a smallest vertex cut separating u and v.
This hypergraph has order 7 and size 4. Here, edges do not just connect two vertices but several, and are represented by colors. Alternative representation of the hypergraph reported in the figure above, called PAOH. [1] Edges are vertical lines connecting vertices. V7 is an isolated vertex. Vertices are aligned to the left.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The induced labeling on the two vertices are both 1. So P 2 is not edge-graceful. Appending an edge and a vertex to P 2 gives P 3, the path with three vertices. Denote the vertices by v 1, v 2, and v 3. Label the two edges in the following way: the edge (v 1, v 2) is labeled 1 and (v 2, v 3) labeled 2. The induced labelings on v 1, v 2, and v 3 ...
A unit distance graph with 16 vertices and 40 edges. In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one.