Search results
Results from the WOW.Com Content Network
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
Proof: 2 p+1 ≡ 2 (mod q), so 2 1 / 2 (p+1) is a square root of 2 mod q. By quadratic reciprocity, every prime modulus in which the number 2 has a square root is congruent to ±1 (mod 8). A Mersenne prime cannot be a Wieferich prime. Proof: We show if p = 2 m − 1 is a Mersenne prime, then the congruence 2 p−1 ≡ 1 (mod p 2) does ...
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
For example, there is a near-equality close to the round number 1000 between powers of 2 and powers of 10: 2 10 = 1024 ≈ 1000 = 10 3 . {\displaystyle 2^{10}=1024\approx 1000=10^{3}.} Some mathematical coincidences are used in engineering when one expression is taken as an approximation of another.
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m.Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers.
A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd. The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.